Generalized Line Graphs: Cartesian Products and Complexity of Recognition

نویسندگان

  • S. Aparna Lakshmanan
  • Csilla Bujtás
  • Zsolt Tuza
چکیده

Putting the concept of line graph in a more general setting, for a positive integer k the k-line graph Lk(G) of a graph G has the Kk-subgraphs of G as its vertices, and two vertices of Lk(G) are adjacent if the corresponding copies of Kk in G share k− 1 vertices. Then, 2-line graph is just the line graph in usual sense, whilst 3-line graph is also known as triangle graph. The k-anti-Gallai graph 4k(G) of G is a specified subgraph of Lk(G) in which two vertices are adjacent if the corresponding two Kk-subgraphs are contained in a common Kk+1-subgraph in G. We give a unified characterization for nontrivial connected graphs G and F such that the Cartesian product G F is a k-line graph. In particular for k = 3, this answers the question of Bagga (2004), yielding the necessary and sufficient condition that G is the line graph of a triangle-free graph and F is a complete graph (or vice versa). We show that for any k > 3, the k-line graph of a connected graph G is isomorphic to the line graph of G if and only if G = Kk+2. Furthermore, we prove that the recognition problem of k-line graphs and that of k-anti-Gallai graphs are NP-complete for each k > 3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Recognition of Partial Star Products and Quasi Cartesian Products

This paper is concerned with the fast computation of a relation d on the edge set of connected graphs that plays a decisive role in the recognition of approximate Cartesian products, the weak reconstruction of Cartesian products, and the recognition of Cartesian graph bundles with a triangle free basis. A special case of d is the relation δ, whose convex closure yields the product relation σ th...

متن کامل

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

On the Complexity of Recognizing S-composite and S-prime Graphs

S-prime graphs are graphs that cannot be represented as nontrivial subgraphs of nontrivial Cartesian products of graphs, i.e., whenever it is a subgraph of a nontrivial Cartesian product graph it is a subgraph of one the factors. A graph is S-composite if it is not S-prime. Although linear time recognition algorithms for determining whether a graph is prime or not with respect to the Cartesian ...

متن کامل

The Generalized Wiener Polarity Index of some Graph Operations

Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.

متن کامل

Different-Distance Sets in a Graph

A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015